Assessing controls on diffuse groundwater recharge using unsaturated flow modeling
نویسندگان
چکیده
[1] Understanding climate, vegetation, and soil controls on recharge is essential for estimating potential impacts of climate variability and land use/land cover change on recharge. Recharge controls were evaluated by simulating drainage in 5-m-thick profiles using a one-dimensional (1-D) unsaturated flow code (UNSAT-H), climate data, and vegetation and soil coverages from online sources. Soil hydraulic properties were estimated from STATSGO/SSURGO soils data using pedotransfer functions. Vegetation parameters were obtained from the literature. Long-term (1961–1990) simulations were conducted for 13 county-scale regions representing arid to humid climates and different vegetation and soil types, using data for Texas. Areally averaged recharge rates are most appropriate for water resources; therefore Geographic Information Systems were used to determine spatial weighting of recharge results from 1-D models for the combination of vegetation and soils in each region. Simulated 30-year mean annual recharge in bare sand is high (51–709 mm/yr) and represents 23–60% (arid–humid) of mean annual precipitation (MAP). Adding vegetation reduced recharge by factors of 2– 30 (humid–arid), and soil textural variability reduced recharge by factors of 2–11 relative to recharge in bare sand. Vegetation and soil textural variability both resulted in a large range of recharge rates within each region; however, spatially weighted, long-term recharge rates were much less variable and were positively correlated with MAP (r = 0.85 for vegetated sand; r = 0.62 for variably textured soils). The most realistic simulations included vegetation and variably textured soils, which resulted in recharge rates from 0.2 to 118 mm/yr (0.1–10% of MAP). Mean annual precipitation explains 80% of the variation in recharge and can be used to map recharge.
منابع مشابه
Lithologic influences on groundwater recharge through incised glacial till from profile to regional scales: Evidence from glaciated Eastern Nebraska
[1] Variability in sediment hydraulic properties associated with landscape depositional and erosional features can influence groundwater recharge processes by affecting soil-water storage and transmission. This study considers recharge to aquifers underlying river-incised glaciated terrain where the distribution of clay-rich till is largely intact in upland locations but has been removed by all...
متن کاملGroundwater recharge simulation using a coupled saturated-unsaturated flow model
Abstract The coupled MODFLOW-HYDRUS software package was used to produce a saturated-unsaturated flow model for a Flood Spreading System (FSS) and its associated aquifer. The study aim to improve simulations of near-surface hydrological processes, including temporal and spatial variation in groundwater recharge rates. The coupled model was built with average RMSE=1.1 and 1.3 for calibration ...
متن کاملChanges in sources and storage in a karst aquifer during a transition from drought to wet conditions
Please cite this article in press as: Wong, C.I., et Hydrol. (2012), http://dx.doi.org/10.1016/j.jhyd Understanding the sources and processes that control groundwater compositions and the timing and magnitude of groundwater vulnerability to potential surface-water contamination under varying meteorologic conditions is critical to informing groundwater protection policies and practices. This is ...
متن کاملMODELING OF GROUNDWATER FLOW OVER SLOPING BEDS IN RESPONSE TO CONSTANT RECHARGE AND STREAM OF VARYING WATER LEVEL
This paper presents an analytical model characterizing unsteady groundwater flow in an unconfined aquifer resting on a sloping impervious bed. The aquifer is in contact with a constant water level at one end. The other end is connected to a stream whose level is increasing form an initial level to a final level at a known exponentially decaying function of time. Moreover, the aquifer is repleni...
متن کاملThe interaction between groundwater flow systems, water supply wells, and natural or artificial groundwater recharge creates a complex velocity flow field in aquifers
Groundwater recharge must be well understood for the effective utilization of water resources. In this article some of the recent studies in groundwater recharge modeling are detailed and discussed. The topics covered include (1) Recharge modeling in deterministic framework, (2)Recharge modeling in stochastic framework, (3) Recharge modeling using electromagnetic surveys (4) Mountain front rech...
متن کامل